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COMMENT 
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Abstract. We suggest that pB, the critical exponent of the backbone of percolation clusters, 
is given by P B = $ ( y + 5 p ) -  1, where y and p are susceptibility and order parameter 
exponents of percolation respectively. The proposed relation agrees with the E expansion 
of pB given by Hams and Lubensky and provides accurate estimates of pB at all d > 1.  
This relation may suggest that the backbone exponents are not independent of other 
percolation exponents. We also suggest a more general relation for the order parameter 
exponent of m-connected clusters. 

Although it was hoped in the pioneering work of Broadbent and Hammersley (1957) 
that percolation theory would find applications in the problems of fluid flow in porous 
media, this idea was not developed to a large extent for many years. Only recently 
has some progress been made and concepts of percolation theory have been utilised 
to describe flow of fluids in porous media. In particular, percolation theory has been 
employed to explain mixing of two fluids in an unsaturated porous medium (Sahimi 
1984a, Sahimi et al 1983), to describe how several immiscible fluid phases distribute 
themselves in a porous medium (Heiba et a1 1982, 1984a, b) and how two immiscible 
phases displace one another (Chandler er al 1982, Wilkinson and Willemsen 1983). 
One of the main problems in such modelling is that only the multiply connected part 
of the infinite cluster supports the transport process; the rest of the cluster is the 
dead-end or dangling part. The biconnected part of the cluster is called the backbone 
(Kirkpatrick 1978). A new exponent pB (sometimes called p ' )  was introduced by 
Kirkpatrick (1978) to describe the fraction B ( p )  of total sites (bonds) that belong to 
the backbone: 

Here p is the fraction of active sites (bonds) and p c  is the percolation threshold. In 
analogy with the critical exponents that describe the statistics of percolation clusters, 
one can also define the susceptibility exponent ye,  correlation length exponent vB and 
so on. 

One of the main questions has been whether the critical exponents of the backbone 
are totally independent exponents, or are related to the traditional percolation 
exponents. Shlifer er a1 (1979) showed that the correlation length exponent is the same 
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for both the percolation clusters and the backbone, i.e. Y = v,. The backbone of the 
largest percolation cluster at p c  is recognised to be a fractal object with a fractal 
dimensionality dB which is given by (Kirkpatrick 1978) 

dB = - P B /  (2) 

where d is the dimensionality of the system. We compile in table 1 the available 
numerical estimates for the backbone exponents. The results of Li and Strieder 
(1982a, b) were obtained by the simple Monte Carlo method, while those of Kirkpatrick 
( 1978) were obtained by Monte Carlo simulations and finite-size scaling arguments. 
Puech and Rammal (1983) made direct measurements of de ,  while Shlifer et a1 (1979) 
employed a position-space renormalisation group method. Hong and Stanley ( 1983) 
developed low-density series expansions to estimate pB and d,. Finally, Herrmann er 
a1 (1984) made a direct measurement of d, by the new method of ‘burning’ introduced 
by Stauffer (1984). These are the only data we are aware of. 

Table 1. Comparison of predicted values of backbone exponent P,  and its fractal 
dimensionality d, with the available data. 

d P U pB (predicted) P ,  (data) d ,  (predicted) d, (data) 

0.43 * 0.02b 
2 - 36 5 39/72 = 0.542” 0.38 i 0.02‘ 

0.50 i 0.02d 

5 4 

0.50-0.60‘ 
3 0.42 0.88 0.960 0.9 * 0. I‘ 

4 0.62 0.66 1.250 1.1 i0.2‘ 

5 0.84 0.57 1.685 - 
2 6  1 2 2 2’ I 

1.63 2 0.0Id 
153/96= 1.594a 1.68i0.02‘ 

1.60 i 0.0P 
1.80i0.04h 

1.910 I .77 * 0.07g 
1.83 i 0.08h 

2.106 
+0.14h 
-0.21 

2.044 1.93 * 0.16h 
2 2 

a This is the predicted value if equation ( 5 )  is valid at d = 2. 
(1982b). Shlifer et a1 (1979). e Kirkpatrick (1978). 

Li and Strieder (1982a). Li and Strieder 
Herrmann et a/ (1984). Puech and Rammal (1983). 

Hong and Stanley (1983). I Larson and Davis (1982). 

Harris (1983) and Harris and Lubensky (1983) (hereafter referred to as HL) have 
recently developed a field-theoretic approach to the backbone problem and derived 
an E expansion ( E  = 6 - d )  for the backbone exponents. In particular, they have shown 
that 

p B  = 2p + ,$(”, (3) 

where p is the critical exponent of percolation probability and +!I(’) is a crossover 
exponent describing the correlation function of the backbone. According to these 
authors $(’I is an independent exponent and thus the critical exponents of the backbone 
cannot be described in terms of the exponents of the infinite cluster. They also obtained 
to order E ’ ,  +!I(’) = 2 . ~ ~ 1 4 9 ,  which then yields 

p,=2-2&/7+65E2/6174+. . .  . (4) 
This result means that dB= 2 + ~ / 2 1  +. . . , i.e. d, has a non-monotonic dependence 
on d. 
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In this paper we present a simple relation which relates PB to /3 and v. The proposed 
relation agrees with the E expansion of PB, equation (4). This agreement suggests 
strongly that the proposed equation may be exact, although we do not have any rigorous 
proof. Therefore, if our scaling relation is exact, all backbone critical exponents can 
be described in terms of those of the infinite cluster and thus $(2) is not an independent 
exponent. The proposed scaling relation is given by 

P B  = &( vd + 3 p ) - 1. ( 5 )  

If we use (Amit 1976, Priest and Lubensky 1976) p = 1 - ~/7-61~’ /12348 and v = 
4 +5c/84 +589~~/37044  in equation ( 5 ) ,  the result agrees with equation (4). This calls 
for the calculation of higher-order terms of the E expansion of $(2)  to assess further 
the validity of equation (5). The plausible guess (Kirkpatrick 1978) p B = 2 p  breaks 
down at order. Equation ( 5 )  can also be written as pB = f( y + 5 p )  - 1, so that it will 
also be valid above six dimensions, the upper critical dimensionality of percolation. 

In table 1 we list the predictions of equation ( 5 )  for pB; we also calculate the fractal 
dimensionality dB of the backbone, the results of which are also listed in table 1. 
Equation (5) correctly predicts that dB is a non-monotonic function of d. Equation 
(5) is not valid at d = 1 where one expects to have PB=O. HL pointed out that their 
field-theoretic derivation of (3) breaks down at a dimensionality dl which they estimated 
to be dl = 3. In a previous paper (Sahimi 1984b) we expressed the opkion that dl is 
the dimensionality at which df = 2, where df = d - p /  v is the fractal dimensionality of 
the largest percolation cluster at p c ;  this then means that dl = 2.2. From equations (3) 
and (5) we obtain v $ ( ~ )  = A/2 - 1, where A = p + y is the ‘gap’ exponent. Since v $ ( ~ )  > 0, 
we must have A > 2, i.e. d > 1.65. But we suggest that equation ( 5 )  may be valid 
for d f z  2, i.e. for A /v22 .  If we assume that ( 5 )  is also valid at d = 2, we obtain 
pB( d = 2) = 39/72 = 0.541. This is consistent with the result of Kirkpatrick (1978), 
0.5 < pB( d = 2) < 0.6, and not too much larger than the estimate of Shlifer er a1 (1979), 
pB( d = 2) = 0.50 * 0.02. The predicted value of PB(d = 2) also implies that dB( d = 2) = 
153/72- 1.594, in excellent agreement with the estimate of Herrmann et a1 (1984), 
dB = 1.60k0.05. It is also not too different from other estimates of dB (see table 1).  The 
work of HL also indicates that the backbone exponents obey the usual scaling and 
hyperscaling laws, e.g. 2pB + yB = vd. Thus we obtain a simple equation for yB: 

YB = 2 -3p. (6) 

Equation (5) is certainly much more accurate in estimating dB than the equation 
dB=ln (d  +l)/ ln2,  which is the prediction of the Sierpinski gasket model of the 
backbone (Gefen et al 1981). It also provides more accurate estimates of dB than the 
present series estimates of Hong and Stanley (1983). 

One can more generally study m-connected clusters in which two sites which are 
widely separated are connected to each other by m independent paths of active sites. 
One can define, in a similar manner, the order parameter p c m )  for these clusters so 
that p ( ’ )  = p and / 3 ( 2 )  = PB. Similarly, the correlation function of the m-connected 
clusters is described by an exponent $(“I. 

According to the work of HL one has, to order E‘, $(” = m(m - 1 ) ~ ~ / 4 9  and one 
also has p c m )  = mp + v $ ( ~ ) .  We propose that 

p c m ) =  $(m2- m)vd +(5m - m2)p]-f( mz- m), (7) 
which reduces to ( 5 )  for m = 2. This equation too agrees with the E expansion of p c m )  
given by HL. In a previous paper (Sahimi 1984b) we observed that the percolation 
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equation (9, we obtain t = (vd +3/3)/2.  This relation for t is similar in its dependence 
on v and p to the Alexander-Orbach conjecture (Alexander and Orbach 1982), 
t = [(-3d - 4) v - p ] / 2 .  These two relations yield very similar results for d 5 d, ,  although 
they cannot be equal for general d. Even if our proposed equations (5) and ( 7 )  turn 
out to be only approximate formulae, they are certainly much more accurate than any 
Flory-like approximations which usually break down in order E. For example, a Flory 
approximation for df, the fractal dimension of the largest percolation cluster at p c ,  yields 
(Isaacson and Lubensky 1980) df = d / 2  + 1,  i.e. df  = 4- ~ / 2 ,  in complete disagreement 
with the results of Amit (1976) and Priest and Lubensky (1976). 

With the aid of equation ( 5 ) ,  which can be written as PB = ( y + 5 p ) / 2  - 1, so that it will 
also be valid above six dimensions, one can obtain accurate estimates for &,the spectral 
dimension of the backbone. ds is given by d; = 2( vd - p B ) / ( 2 v  + t - PB). The results are 
also listed in table 1. These results show that the spectral dimension ofthe backbone varies 
continuously between d = 2 and d = 6,  in contrast with the spectral dimension of the 
largest percolation cluster at p E  which remains approximately constant. 

This work was supported in part by the US Department of Energy. 
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